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Abstract-The vertical mixed convection flow of a uniform stream, about a horizontal line source 
generating favourable buoyancy effects, may be characterized by an evolution between a weak and strong 
plume. This appraisal of the developing flow field provides the basis for an efficient formulation of the 
problem. Comprehensive solutions within this framework are obtained for a wide range of Prandtl 
numbers. In contrast the vertical mixed convection flow about a horizontal line source resulting in adverse 
buoyancy forces may be expected ultimately to display stagnation. Numerical solutions of the boundary 
layer equations governing this adverse case reveal that the anticipated stagnation is accompanied by a 

singular behaviour characterized by unbounded growth of the shear layer. 

1. INTRODUCTION 

THE MIXED convection flow of a uniform stream 
about a horizontal line source of heat has recently 
been discussed by Afzal Cl]. In contrast to earlier 
workers, Wood [2] and Wesseling [3], who analysed 
equations based upon an Oseen linearization of the 
Navier-Stokes equations, Afzal considers the full non- 
linear, governing boundary layer equations. Using 
series extension techniques, forcasts for various fea- 
tures of the flow were obtained from regular series 
solutions, valid in the vicinity of the heat source, for 
a Prandtl number of 0.72. Haaland and Sparrow [4] 
have subsequently commented on the limitations of 
this investigation and have extended the discussion, 
both theoretically and numerically, to Prandtl num- 
bers ranging from O(1) to infinity. In particular 
Haaland and Sparrow develop algebraic relations, 
valid for that range of Prandtl numbers, which accur- 
ately predict the centre-line velocity and temperature 
distributions when buoyancy effects are positive with 
respect to the oncoming uniform stream. 

Although it is acknowledged that the flow under 
examination will evolve towards the similarity state 
associated with the pure free convection plume, 
Haaland and Sparrow do not exploit this inherent 
structure in their numerical solutions. As a result 
large numbers of grid points (- 1500) are required to 
achieve the required accuracy over the semi-infinite 
region downstream of the heat source. Moreover, 
these authors do not proceed to examine the flow 
associated with a source whose buoyancy is negative 
with respect to the oncoming stream. In this situation 
it is to be expected that the buoyancy interaction with 

the uniform stream will lead to a stagnation of the 
flow. Indeed Afzal’s work supports this conjecture 
and identifies the location of such a stagnation point. 
An unusual feature of the predicted temperature 
distribution in the vicinity of stagnation is the presence 
of a temperature maximum away from the axis of 
symmetry. In view of the susceptibility of series 
extension techniques to round off error one is led to 
question whether or not this is a physical feature 
of the flow or a spurious prediction of the series 
representation. 

In the work that follows we present a comprehens- 
ive re-examination of the prescribed flow. In the 
first instance we introduce an alternative numerical 
formulation of the positively buoyant case. The for- 
mulation exploits the evolution of the flow between 
known similarity states. An efficient algorithm pre- 
sented by Hunt and Wilks [S] to handle precisely this 
circumstance is used to obtain numerical solutions 
for a wide range of Prandtl numbers between zero 
and infinity. Flow characteristics are extracted from 
the solutions and shown to coincide downstream with 
those of the pure plume as presented by Fujii et al. 

[6]. Further numerical solutions are then obtained 
for the case of the negatively buoyant heat source. 
The solutions display the anticipated stagnation. As 
the numerical solution approaches the stagnation 
point there is evidence of a singular breakdown of 
the governing equations characterized by unbounded 
growth of the boundary layer thickness. Certain 
structural features of the singular behaviour are 
extracted from the numerical solution which may 
provide the basis for a local analysis of the precise 
nature of the singularity. It is noteworthy that as the 
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NOMENCLATURE 

specific heat at constant pressure Greek symbols 
non-dimensional stream functions 

5 
coefficient of thermal expansion 

at small c, large 5 and for half-width of velocity variation 
continuous transformation, & half-width of temperature variation 
respectively q, rj, ij non-dimensional normal 

g acceleration due to gravity coordinate at small 5, large 5 and 

Gr, local Grashof number for continuous transformation, 
J normalized excess momentum flux respectively 

: 

normalized excess mass flux 0, 8, 0 non-dimensional temperature at 
heat released per unit length of small l, large 5 and for continuous 
thermal source transformation, respectively 

Re, local Reynolds number K coefficient of thermometric 
T temperature conductivity 

(L) 

ambient temperature coefficient of kinematic viscosity 
coordinates measured vertically ; non-dimensional axial coordinate 
from line source and normal to the P density of fluid 
axis of symmetry, respectively Prandtl number 

(n, v) velocity components stream function. 

u, free stream velocity. 

stagnation point is approached there is no indication 
of the aforementioned temperature maximum away 
from the axis of symmetry. 

2. THE GOVERNING EQUATIONS 

When a uniform stream of velocity U, and T, 
flows vertically past a horizontal line source of heat, 
the boundary layer equations for the flow are 

!?!+aU=, 
ax ay 

u$ + v$ = v$ f g/3(T- T,) (2) 

An energy conservation constraint is obtained from 
equation (3) in the form 

u(T- T,)dy = Q (6) 

where cp is the specific heat at constant pressure, p 
the density of the fluid and Q is the heat released per 
unit length of thermal source. Accordingly the energy 
transported across any plane is exactly that intro- 
duced into the flow by the source at x = 0. 

aT aT d2T 
Ux+Vy=K-p (3) 3. NUMERICAL FORMULATION-POSITIVE 

BUOYANCY 

Here (u,u) are velocity components associated with The relative local magnitudes of the physical mech- 
coordinates (x, y) measured vertically from the heat anisms in the flow are characterized by the non- 
source and normal to the axis of symmetry; T is the dimensional coordinate 
temperature and g, /L?, v and K are the acceleration 
due to gravity, the coefficient of thermal expansion, the 
kinematic viscosity and thermometric conductivity, (7) 

respectively. The Boussinesq approximation is 
assumed to hold and the plus or minus signs in 
equation (2) correspond to a positively or negatively 
buoyant source. 

where Gr, and Re, are the local Grashof and Reynolds 
numbers, respectively, given by 

The flow is assumed to be symmetric about the 
x-axis and hence G,. =g&. X Re CU. 

PC,9 X v 
(8) 

“=&=E_O 
8.v ay - 

ony=O (4) 
The transformations, boundary conditions and con- 

whilst ambient conditions require 

u+U,, T-+T, asy+ co. 

servation constraints appropriate to the limiting sim- 
ilarity states associated with 5 -+ 0 and 5 + cc are 

(5) then: 
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Small l 

.arge r 

II, = v -$ 
l/S 

( > xJ’Sf({,tj); 
P 

B(t, tf) 

3ca 0) = &tc 0) = B&, 0) = 0 

_&+,-1’s, 8+0 as f+co 

J,gdtf = 1. 

to be solved subject to 

J(L 0) = &(t, 0) = &K, 0) at ti = 0 

The continuous transformation algorithm of Hunt 
and Wilks [S] creates a single set of governing 
equations which effect a smooth transition between 
those transformed equations associated with equa- 
tions (9) and (10). In this case the intermediate 
transformations are 

T- T, = (1 + &l’lo (11) 

and the governing equations are 

s m &gdij = 1. 
-m 

(14) 

The above parabolic system of equations may then 
be integrated straightforwardly as a set of five first- 
order differential equations using the Keller box [7] 
method. The integration is initiated by the known 

(9) 
analytic solutions at 5 = 0, namely 

f(O,fj) = ij; B(O,$ = (f-)lllexp( - $) (15) 

where u = V/K is the Prandtl number. As all derivatives 
in the method involve central differences it is possible 
to obtain highly accurate solutions. The accuracy of 
the results could be ascertained in three ways, (i) by 
comparing the results at r _ 102’ with known analytic 
solutions for u = S/9 and 2 for the pure free convection 
plume, (ii) from the convergence of the extrapolation 
and (iii) from the integral constraint of equations (14). 
As a consequence it is anticipated that results are 
accurate to six significant digits. In support of this 
assertion the numerical details of the present comput- 
ation at { = 102’ are compared in Table 1 with the 
accurate solutions of Fujii et al. [6] for the pure free 

(10) convection plume. 

4. RESULTS AND DISCUSSION-POSITIVE 
BUOYANCY 

Some features of the numerical solutions have been 
extracted and illustrated. In Figs. l-3 developing 
velocity and temperature profiles are contrasted for 
0 = 0.1, 1, and 10. A common grid has been used to 
emphasize the significant variations in the regions of 
influence of the source for varying Prandtl numbers. 
At low Reynolds number the regions of influence of 
velocity and temperature variations are comparable. 
As the Prandtl number increases however the region 
of the flow field affected by temperature variations 
diminishes relative to the region affected by velocity 
variations. 

The progressive evolution from the uniform stream 
towards the pure free convection plume is also evident 
in Figs. l-3. Centre-line velocities and temperatures 
are illustrated in Figs. 4 and 5. These are presented 
in small t variables. The plots are clearly asymptoting 
to their plume values for the various Prandtl numbers. 
There is also clear evidence of the asymptotic limit as 
ts + co a feature which was exploited by Haaland and 
Sparrow [4]. No such limit appears for decreasing 
values of the Prandtl number. One may also deduce 
from Figs. 4 and 5 that the plume state is more rapidly 
achieved as the Prandtl number increases. This feature 
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FIG. l(a). Velocity profile development, 0 = 0.1. 
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FIG. l(b). Temperature profile development, IJ = 0.1 
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FIG. 3(a). Velocity profile development, (i = 10. 
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FIG. 3(b). Temperature profile development, c = 10. 
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Table 1. Comparison between the pure free convection plume results of Fujii et al. [6] and the 
present computations at large 5 

Wilks and Wilks and Wilks and 
Fujii et al. Hunt Fujii et al. Hunt Fujii et al. Hunt 

CT f+,o) Jq(1020,0) q@J>O) qloso,o) f(Q co) f(lOZO, 00) 

0.01 0.5276 0.52742 0.7214 0.72083 9.64 9.706 
0.03 0.61745 
0.1 0.71033 
0.3 0.77544 

519 0.80093 
0.7 0.80872 

1 0.81937 
2 0.837485 
3 0.84747 
5 0.85968 

10 0.87516 
30 0.89547 

100 0.91095 
cc 0.93356 

0.61771 
0.71033 
0.77544 
0.8009303 
0.80871 
0.81937 
0.8374843 
0.84746 

- 

0.87515 
0.89547 
0.91095 

0.64257 
0.56415 
0.49539 
0.45901 
0.44616 
0.42753 
0.396760 
0.38240 
0.36786 
0.35336 
0.33889 
0.33018 
0.31983 

0.64330 
0.56416 
0.49540 
0.4590130 
0.44616 
0.42754 
0.3967611 
0.38240 

- 

0.35336 
0.33890 
0.33019 

6.40 
3.944 
2.654(5) 
2.192(5) 
2.059 
1.892 
1.6709 
1.589(5) 
1.519(5) 
1.459 
1.409 
1.383 
1.346 

6.281 
3.940 
2.654 
2.192133 
2.059 
1.891 
1.670868 
1.589 

1.459 
1.408 
1.382 

IO 

FIG. 4. Centre-line velocities. 

I IO2 lo4 

c 
FIG. 5. Centre-line temperatures. 
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FIG. 6. Excess mass flux relative to fully developed plume flow. 
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< 

FIG. 7. Excess momentum flux relative to fully developed plume flow. 

may be further quantified by examining (i) the excess 
mass flux as a result of the heat source normalized 
with respect to the plume mass flow rate, namely 

(16) 

and (ii) the excess momentum flux normalized with 
respect to the pure plume momentum, namely 

(18) 

“’ 

5 112 (1 + W”& - (1 + 1,,l,Io 1 
5 m(I + ()““f[(l + ()“‘& - l]drj 

dij = (19) 

= 

53’5{3(~Lpl”me (17) 
fCTpl”lllc 
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FIG. 8. Velocity half-width. 

These quantities are illustrated in Figs. 6 and 7. Each 
curve approaches the asymptote unity as 5 + co 
as required by the definition. The figures provide 
confirmation of the approach to the plume state at 
lesser values of 5 for increasing Prandtl numbers. 
They may also be used to estimate the location at 
which the plume state has been achieved to within a 
prescribed tolerance. 

Finally in Figs. 8 and 9 we present measures of the 
widths of the regions of velocity and temperature 
variations relative to free stream conditions, d and 
&, respectively. Following Haaland and Sparrow [43 
the region of velocity variation is defined as that over 
which velocities are in excess of 5% of the velocity 
defect between centre-line and free stream values. 

Thus 8 is that value of tj at which 

(1 + W”.& - 1 
(1 + #‘“(&)s=, - 1 

= 005 

. . 
(20) 

Similarly the region of temperature variation is 
defined as that over which the temperature exceeds 
5% of the temperature defect between centre-line and 
free stream values and 8, is then that value of ij for 
which 

& = 0.05. (21) 

The ordinate of Fig. 9 has been scaled with respect 
to a”’ in view of the known analytic form at c = 0. 

5. NEGATIVE BUOYANCY 

To investigate the flow when buoyancy forces are 
adverse with respect to the oncoming stream the 
equations appropriate to the transformations of equa- 
tions (9) must be used, namely 

The boundary conditions are unchanged and the 
conservation constraint remains valid. The negative 
buoyancy is reflected in the sign of 0 and the coefficient 
<If2 characterizes the flow as a developing pertur- 
bation about the uniform stream at 5 = 0. 

2- 

FIG. 9. Temperature half-width. 
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The equations have again been integrated using the 
Keller box method. An indication of the features 
displayed by the computations is given in the series 
of illustrations in Figs. 10(a)-(d). These relate to the 
case B = 1 and present the same information from 
two viewpoints. Note the singular behaviour of the 
centre-line velocity whilst the centre-line temperature 
remains of O(1). As the singularity is approached 
the respective velocity and temperature regions of 
influence grow unboundedly. The temperature distri- 
bution develops towards a constant value over the 
central region of the stagnating plume. There is clearly 
no evidence of the temperature maximum suggested 
by Afzal [l]. Further detailed examination of the 
numerical results indicate that as the stagnation 
singularity is approached the displacement of max- 
imum shear and maximum temperature gradient away 
from the axis of symmetry behaves as In (4. - 5) where 
5, is the stagnation point. This information, together 
with the knowledge that the centre-line velocity 
behaves as (5, - #I2 should enable the precise 
analytic structure of the singularity within the frame- 
work of the governing equations to be identified. Such 
an investigation however is beyond the scope of this 

paper. 

6. CONCLUDING REMARKS 

Numerical solutions have been presented for the 
vertical mixed convection flow of a uniform stream 
about a horizontal line source of heating or cooling. 
When the resulting buoyancy forces are favourable 
relative to the oncoming stream a formulation has 
been introduced in which the similarity states of the 
pure jet and the pure free convection plume are 

automatically incorporated. Each state arises natur- 
ally with respect to the limiting values of a charac- 
teristic coordinate which reflects the local relative 
significance of buoyancy and inertia. Solutions have 
been presented for a comprehensive range of Prandtl 
numbers and features monitoring the development of 
the flow between the jet and the plume have been 
illustrated. An indication of the accuracy of the 
solutions has been displayed by comparison with 
available results for the free convection plume. 

Parallel computations of the flow field when buoy- 
ancy forces are adverse to the oncoming stream have 
also been obtained. A stagnation flow is generated as 
anticipated but which displays singular behaviour as 
the stagnation point is approached. Characteristics of 
the singularity have been identified from the numerical 
solution. 
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CONVECTION MIXTE VERTICALE A PARTIR D’UNE SOURCE RECTILIGNE 
HORIZONTALE, EN CHAUFFAGE OU REFROIDISSEMENT 

R&m&-La convection mixte verticale d’un 6coulement uniforme autour d’une source rectiligne hori- 
zontale crtant des effets d’Archimbde, peut 6tre caract&& par une 6volution entre un panache faible ou 
intense. L’apprtiation du dtveloppement de l%coulement foumit la base pour la bonne formulation du 
probleme. A partir de cette analyse, des solutions sont obtenues pour un large domaine de nombres de 
Prandtl. La convection mixte verticale g partir d’une source rectiligne horizontale pe.ut, sous I’effet de 
forces d’Archimbde adverse, conduire $ une stagnation. Des solutions numCriques des 6quations de couche 
limite dans ce demier cas r&lent que la stagnation est accompagnQ par un comportement singulier 

caracttri@ par une croissance illimitQ de la couche de cisaillement. 

GEMISCHTE KONVEKTIONSSTR6MUNG UM EINE HORIZONTALE LINIENQUELLE 
BE1 HEIZUNG ODER KOHLUNG 

ZusanuuenfPssung-Die vertikale gemischte Konvektion einer gleichfiirmigen Str6mung urn eine hori- 
zontale Linienquelle, welche gleichsinnig wirkende Auftriebseffekte hervorruft, kann durch die Entwicklung 
zwischen einer schwachen und starken Konvektionsfahne charakterisiert werden. Diese Abschltzung des 
sich entwickelnden Str6mungsfeldes gibt eine Grundlage fiir eine sinnvolle Formulierung des Problems. 
Fiir einen weiten Bereich der PrandtIzahl ergeben sich umfassende Liisungen innerhalb dieses Rahmens. 
Dagegen darf erwartet werden, daI3 die vertikale gemischte Konvektion um eine horizontale Linienquelle 
bei gegensinnig wirkenden Auftriebskriiften schlieBlich zu Stagnation fihrt. Die numerischen Liisungen 
der Grenzschichtgleichungen fiir diesen entgegensinnigen Fall zeigen, dal3 die erwartete Stagnation durch 
ein sing&&s Verhalten begleitet wird, das durch ein unbegrenztes Wachsen der Scherschicht gekennzeich- 

net ist. 
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BEPTMKAJlbHOE CMELUAHHOKOHBEKTMBHOE TEYEHME Y 1-OPM30HTAJlbHOTO 
JIMHERHOrO MCTOrIHMKA HAl-PEBA MJIM OXJIAXJ(EHMII 

AHHOTaUHn-BepTkiKaJIbHan CMeUlaHHall KOHBeKUHn y rOpH30HTaJlbHOrO JiHHefiHOrO HCTO'IHHKB, CO% 

nalomero nonbehwoe Teqewie, MomeT xapawepe30eaTbca pa3ewseM nocxonnmero noToxa passok 
miTeticmwocw.OueHxa HHT~~CHBHOCTW pa3mBamuerocn TeYeHm co3naeT owoey mn MaTeMaTwiec- 

KoA nocTaHoBKu 3ana9w. AHaJIHTHqeCKHe peuremn 3Toii 3anaw nonyqeHbr arm umpoKor0 nHana30Ha 

YWCeJl npaHnTJl% BepTBKaJlbHbIk IIOTOK, B3aHMOnekTByn CO BCTpeSHbIM llOXbeMHblM TeSeHWeM, 

co3naeT 3acTokHyko 30~~. rirtcneHHbIe perueHsn ypasHeHk2 norpaHwiHor0 cnofl wn 3Toro cnyqan 
noKa3am4, qT0 3aTopMamiBaHue noToKa conpoeoxnaercn cHHrynnpHocTbm, nponennmueiicn B mine 
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