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Abstract—The vertical mixed convection flow of a uniform stream, about a horizontal line source
generating favourable buoyancy effects, may be characterized by an evolution between a weak and strong
plume. This appraisal of the developing flow field provides the basis for an efficient formulation of the
problem. Comprehensive solutions within this framework are obtained for a wide range of Prandtl
numbers. In contrast the vertical mixed convection flow about a horizontal line source resulting in adverse
buoyancy forces may be expected ultimately to display stagnation. Numerical solutions of the boundary
layer equations governing this adverse case reveal that the anticipated stagnation is accompanied by a
singular behaviour characterized by unbounded growth of the shear layer.

1. INTRODUCTION

THE MIXED convection flow of a uniform stream
about a horizontal line source of heat has recently
been discussed by Afzal [1]. In contrast to earlier
workers, Wood [2] and Wesseling [3], who analysed
equations based upon an Oseen linearization of the
Navier-Stokes equations, Afzal considers the full non-
linear, governing boundary layer equations. Using
series extension techniques, forcasts for various fea-
tures of the flow were obtained from regular series
solutions, valid in the vicinity of the heat source, for
a Prandtl number of 0.72. Haaland and Sparrow [4]
have subsequently commented on the limitations of
this investigation and have extended the discussion,
both theoretically and numerically, to Prandtl num-
bers ranging from O(1) to infinity. In particular
Haaland and Sparrow develop algebraic relations,
valid for that range of Prandtl numbers, which accur-
ately predict the centre-line velocity and temperature
distributions when buoyancy efects are positive with
respect to the oncoming uniform stream.

Although it is acknowledged that the flow under
exarnination will evolve towards the similarity state
associated with the pure free convection plume,
Haaland and Sparrow do not exploit this inherent
structure in their numerical solutions. As a result
large numbers of grid points (~ 1500) are required to
achieve the required accuracy over the semi-infinite
region downstream of the heat source. Moreover,
these authors do not proceed to examine the flow
associated with a source whose buoyancy is negative
with respect to the oncoming stream. In this situation
it is to be expected that the buoyancy interaction with

the uniform stream will lead to a stagnation of the
flow. Indeed Afzal’s work supports this conjecture
and identifies the location of such a stagnation point.
An unusual feature of the predicted temperature
distribution in the vicinity of stagnation is the presence
of a temperature maximum away from the axis of
symmetry. In view of the susceptibility of series
extension techniques to round off error one is led to
question whether or not this is a physical feature
of the flow or a spurious prediction of the series
representation.

In the work that follows we present a comprehens-
ive re-examination of the prescribed flow. In the
first instance we introduce an alternative numerical
formulation of the positively buoyant case. The for-
mulation exploits the evolution of the flow between
known similarity states. An efficient algorithm pre-
sented by Hunt and Wilks [5] to handle precisely this
circumstance is used to obtain numerical solutions
for a wide range of Prandtl numbers between zero
and infinity. Flow characteristics are extracted from
the solutions and shown to coincide downstream with
those of the pure plume as presented by Fujii et al.
[6]. Further numerical solutions are then obtained
for the case of the negatively buoyant heat source.
The solutions display the anticipated stagnation. As
the numerical solution approaches the stagnation
point there is evidence of a singular breakdown of
the governing equations characterized by unbounded
growth of the boundary layer thickness. Certain
structural features of the singular behaviour are
extracted from the numerical solution which may
provide the basis for a local analysis of the precise
nature of the singularity. It is noteworthy that as the

1119



1120

G. WiLks and R. HUNT

NOMENCLATURE

¢, specific heat at constant pressure Greek symbols

5T non-dimensional stream functions p coefficient of thermal expansion
at small ¢, large ¢ and for 5 half-width of velocity variation
continuous transformation, 5r half-width of temperature variation
respectively n, 11, § non-dimensional normal

g acceleration due to gravity coordinate at small ¢, large ¢ and

Gr, local Grashof number for continuous transformation,

J normalized excess momentum flux respectively

M normalized excess mass flux 6,8, 8 non-dimensional temperature at

o heat released per unit length of small £, large ¢ and for continuous
thermal source transformation, respectively

Re, local Reynolds number K coefficient of thermometric

T temperature conductivity

T, ambient temperature v coefficient of kinematic viscosity

(x, y) coordinates measured vertically ¢ non-dimensional axial coordinate
from line source and normal to the p density of fluid
axis of symmetry, respectively o Prandt! number

(u, v) velocity components Vi stream function.

U, free stream velocity.

stagnation point is approached there is no indication
of the aforementioned temperature maximum away
from the axis of symmetry.

2. THE GOVERNING EQUATIONS

When a uniform stream of velocity U, and T,
flows vertically past a horizontal line source of heat,
the boundary layer equations for the flow are

du Ov
a-f'@—o (1)
ou  du  u
ua+vb;—VWigﬂ(T—Tw) (2
oT oT 2T
ua+va—y—)€a—-))2. (3)

Here (u,v) are velocity components associated with
coordinates (x,y) measured vertically from the heat
source and normal to the axis of symmetry; T is the
temperature and g, f, v and x are the acceleration
due to gravity, the coefficient of thermal expansion, the
kinematic viscosity and thermometric conductivity,
respectively. The Boussinesq approximation is
assumed to hold and the plus or minus signs in
equation (2) correspond to a positively or negatively
buoyant source.

The flow is assumed to be symmetric about the
x-axis and hence

ou 0T
=&_%0 _ =0 4
v 3 3y 0 ony 4)
whilst ambient conditions require

u-U,, T-T, asy — oo. (5)

An energy conservation constraint is obtained from
equation (3) in the form

pc, f uT - T,)dy = Q (©)

where c, is the specific heat at constant pressure, p
the density of the fluid and Q is the heat released per
unit length of thermal source. Accordingly the energy
transported across any plane is exactly that intro-
duced into the flow by the source at x = 0.

3. NUMERICAL FORMULATION—POSITIVE
BUOYANCY

The relative local magnitudes of the physical mech-
anisms in the flow are characterized by the non-
dimensional coordinate

Gr? 2x

= s EHOYX ™
Ref  (pc,)vU5,

where Gr, and Re, are the local Grashof and Reynolds

numbers, respectively, given by

®)

The transformations, boundary conditions and con-
servation constraints appropriate to the limiting sim-
ilarity states associated with ¢ -0 and ¢ —» co are
then:
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The continuous transformation algorithm of Hunt
and Wilks [5] creates a single set of governing
equations which effect a smooth transition between
those transformed equations associated with equa-
tions (9) and (10). In this case the intermediate
transformations are

¥ = (1 + OYOWU )&, i)

yrof Y 2 Q0
T—T,=(1+¢)" (U x) e G
5 Um 1/2
n=<1+¢)*“°<—v;) y
and the governing equations are
T + [ 10(1+¢)]77"" 5(1+¢)7"
=i — Tl (12)

1 1
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=M -8 3
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to be solved subject to
JE0) = T(£.0) = F;&,00  atfi=0
fi— mlaTg 50 asf— o
jw fifdi = 1. (14)

The above parabolic system of equations may then
be integrated straightforwardly as a set of five first-
order differential equations using the Keller box [7]
method. The integration is initiated by the known
analytic solutions at ¢ = 0, namely

) ) i o 2 0_’72
J0,% = 7 5(0,n)=<;‘;> CXP(——4—> (15)

where ¢ = v/x is the Prandtl number. As all derivatives
in the method involve central differences it is possible
to obtain highly accurate solutions, The accuracy of
the results could be ascertained in three ways, (i) by
comparing the results at ¢ ~ 102° with known analytic
solutions for ¢ = 5/9 and 2 for the pure free convection
plume, (ii) from the convergence of the extrapolation
and (iit) from the integral constraint of equations (14).
As a consequence it is anticipated that results are
accurate to six significant digits. In support of this
assertion the numerical details of the present comput-
ation at ¢ ~ 102° are compared in Table 1 with the
accurate solutions of Fujii et al. [6] for the pure free
convection plume.

4. RESULTS AND DISCUSSION—POSITIVE
BUOYANCY

Some features of the numerical solutions have been
extracted and illustrated. In Figs. 1-3 developing
velocity and temperature profiles are contrasted for
g =0.1, 1, and 10. A common grid has been used to
emphasize the significant variations in the regions of
influence of the source for varying Prandtl numbers.
At low Reynolds number the regions of influence of
velocity and temperature variations are comparable.
As the Prandtl number increases however the region
of the flow field affected by temperature variations
diminishes relative to the region affected by velocity
variations.

The progressive evolution from the uniform stream
towards the pure free convection plume is also evident
in Figs. 1-3. Centre-line velocities and temperatures
are illustrated in Figs. 4 and 5. These are presented
in small £ variables. The plots are clearly asymptoting
to their plume values for the various Prandtl numbers.
There is also clear evidence of the asymptotic limit as
¢ — oo a feature which was exploited by Haaland and
Sparrow.[4]. No such limit appears for decreasing
values of the Prandtl number. One may also deduce
from Figs. 4 and 5 that the plume state is more rapidly
achieved as the Prandtl number increases. This feature
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Table 1. Comparison between the pure free convection plume results of Fujii et al. {6] and the
present computations at large &

Wilks and Wilks and Wilks and
Fujii et al. Hunt Fujii et al. Hunt Fujii et al. Hunt
4 Ffo,00  J10%°,0) §(0,0) 5(10*°,0) Jloo,00)  F(102°, 0)
0.01 0.5276 0.52742 0.7214 0.72083 9.64 9.706
0.03 0.61745 0.61771 0.64257 0.64330 6.40 6.281
0.1 0.71033 0.71033 0.56415 0.56416 3944 3.940
0.3 0.77544 0.77544 0.49539 0.49540 2.654(5) 2.654
5/9 0.80093 0.8009303  0.45901 04590130  2.192(5) 2.192133
0.7 0.80872 0.80871 0.44616 0.44616 2.059 2.059
1 0.81937 0.81937 0.42753 042754 1.892 1.891
2 0.837485 0.8374843  0.396760 0.3967611 1.6709 1.670868
3 0.84747 0.84746 0.38240 0.38240 1.589(5) 1.589
5 0.85968 — 0.36786 — 1.519(5) —
10 0.87516 0.87515 0.35336 0.35336 1.459 1.459
30 0.89547 0.89547 0.33889 0.33890 1.409 1.408
100 0.91095 0.91095 0.33018 0.33019 1.383 1.382
© 0.93356 — 0.31983 — 1.346 —
10
S
w
\P
|
102 | 102 104 108
3
FIG. 4. Centre-line velocities.
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Fi1G. 5. Centre-line temperatures.



1126 G. WiLks and R. HUNT

FIG. 6. Excess mass flux relative to fully developed plume flow.
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FIG. 7. Excess momentum flux relative to fully developed plume flow.

may be further quantified by examining (i) the excess and (ii) the excess momentum flux normalized with
mass flux as a result of the heat source normalized respect to the pure plume momentum, namely
with respect to the plume mass flow rate, namely

f pulu — U,)dy

f plu—U,)dy J = (18)

= (16) U pu’ dy}
-~ forplume
-~ for plume

M=

é”’j L+ OMRLA + OVF; — 1]d7
_ o

* 1
fl/zf I:(l + gUIof: _____—:Idﬁ = .~ (19)
n 1 1/10 ]
_ o a1+ (17) 54/5{‘[ ];72 dﬁ}
0 for plume

63/5{f(w)}forplumt
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These quantities are illustrated in Figs. 6 and 7. Each
curve approaches the asymptote unity as ¢ - oo
as required by the definition. The figures provide
confirmation of the approach to the plume state at
lesser values of ¢ for increasing Prandtl numbers.
They may also be used to estimate the location at
which the plume state has been achieved to within a
prescribed tolerance.

Finally in Figs. 8 and 9 we present measures of the
widths of the regions of velocity and temperature
variations relative to free stream conditions, & and
&1, respectively. Following Haaland and Sparrow [4]
the region of velocity variation is defined as that over
which velocities are in excess of 5% of the velocity
defect between centre-line and free stream values.

1127

Thus § is that value of j at which

A+O"H—1 _gos
A+ (Fho—1

20)

Similarly the region of temperature variation is
defined as that over which the temperature exceeds
5% of the temperature defect between centre-line and
free stream values and &7 is then that value of 7 for
which

21

g
= (.05.
-0

The ordinate of Fig. 9 has been scaled with respect
to 62 in view of the known analytic form at £ = 0.

5. NEGATIVE BUOYANCY

To investigate the flow when buoyancy forces are
adverse with respect to the oncoming stream the
equations appropriate to the transformations of equa-
tions (9) must be used, namely

S+ S = €20 = Lo~ fef]  (2D)

L0, 4200, + 051 = EUAO— 0. (23)

The boundary conditions are unchanged and the
conservation constraint remains valid. The negative
buoyancy is reflected in the sign of 8 and the coefficient
&2 characterizes the flow as a developing. pertur-
bation about the uniform stream at &£ = 0.
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F1G. 9. Temperature half-width.
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FiG. 10(b). Temperature profiles for negative buoyancy—View A, o = 1.
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The equations have again been integrated using the
Keller box method. An indication of the features
displayed by the computations is given in the series
of illustrations in Figs. 10(a)—(d). These relate to the
case o =1 and present the same information from
two viewpoints. Note the singular behaviour of the
centre-line velocity whilst the centre-line temperature
remains of O(1). As the singularity is approached
the respective velocity and temperature regions of
influence grow unboundedly. The temperature distri-
bution develops towards a constant value over the
central region of the stagnating plume. There is clearly
no evidence of the temperature maximum suggested
by Afzal [1]. Further detailed examination of the
numerical results indicate that as the stagnation
singularity is approached the displacement of max-
imum shear and maximum temperature gradient away
from the axis of symmetry behaves as In (¢, — &) where
£, is the stagnation point. This information, together
with the knowledge that the centre-line velocity
behaves as (& — &)'/? should enable the precise
analytic structure of the singularity within the frame-
work of the governing equations to be identified. Such
an investigation however is beyond the scope of this
paper.

6. CONCLUDING REMARKS

Numerical solutions have been presented for the
vertical mixed convection flow of a uniform stream
about a horizontal line source of heating or cooling.
When the resulting buoyancy forces are favourable
relative to the oncoming stream a formulation has
been introduced in which the similarity states of the
pure jet and the pure free convection plume are

G. WIiLKS and R. HUNT

automatically incorporated. Each state arises natur-
ally with respect to the limiting values of a charac-
teristic coordinate which reflects the local relative
significance of buoyancy and inertia. Solutions have
been presented for a comprehensive range of Prandtl
numbers and features monitoring the development of
the flow between the jet and the plume have been
illustrated. An indication of the accuracy of the
solutions has been displayed by comparison with
available results for the free convection plume.

Parallel computations of the flow field when buoy-
ancy forces are adverse to the oncoming stream have
also been obtained. A stagnation flow is generated as
anticipated but which displays singular behaviour as
the stagnation point is approached. Characteristics of
the singularity have been identified from the numerical
solution.
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CONVECTION MIXTE VERTICALE A PARTIR D’UNE SOURCE RECTILIGNE
HORIZONTALE, EN CHAUFFAGE OU REFROIDISSEMENT

Résumé—La convection mixte verticale d’un écoulement uniforme autour d’une source rectiligne hori-
zontale créant des effets d’Archiméde, peut étre caractérisée par une évolution entre un panache faible ou
intense. L’appréciation du développement de I'écoulement fournit la base pour la bonne formulation du
probléme. A partir de cette analyse, des solutions sont obtenues pour un large domaine de nombres de
Prandtl. La convection mixte verticale a partir d’une source rectiligne horizontale peut, sous I'effet de
forces d’Archiméde adverse, conduire 4 une stagnation. Des solutions numériques des équations de couche
limite dans ce dernier cas révélent que la stagnation est accompagnée par un comportement singulier
caractérisé par une croissance illimitée de la couche de cisaillement.

GEMISCHTE KONVEKTIONSSTROMUNG UM EINE HORIZONTALE LINIENQUELLE
BEI HEIZUNG ODER KUHLUNG

Zusammenfassung—Die vertikale gemischte Konvektion einer gleichformigen Strémung um eine hori-
zontale Linienquelle, welche gleichsinnig wirkende Auftriebseffekte hervorruft, kann durch die Entwicklung
zwischen einer schwachen und starken Konvektionsfahne charakterisiert werden. Diese Abschitzung des
sich entwickelnden Stromungsfeldes gibt eine Grundlage fiir eine sinnvolle Formulierung des Problems.
Fiir einen weiten Bereich der Prandtlzahl ergeben sich umfassende Losungen innerhalb dieses Rahmens.
Dagegen darf erwartet werden, daB die vertikale gemischte Konvektion um eine horizontale Linienquelle
bei gegensinnig wirkenden Auftriebskraften schlielich zu Stagnation fiihrt. Die numerischen Losungen
der Grenzschichtgleichungen fiir diesen entgegensinnigen Fall zeigen, daB die erwartete Stagnation durch
ein singulires Verhalten begleitet wird, das durch ein unbegrenztes Wachsen der Scherschicht gekennzeich-
net ist.



Vertical mixed convection flow about a horizontal line source of heating or cooling

BEPTUKAJIBHOE CMEIIAHHOKOHBEKTUBHOE TEYEHHUE ¥ FOPU3OHTAJIBHOI'O
JIMHENTHOT'O UCTOYHHKA HATPEBA WJIN OXJIAXXAEHUS

Aunotauus—BepTukaibHas CMEIAaHHAN KOHBEKUHMS Y FOPH3OHTANLHOTO JIMHEHHOTO MCTOYHHKA, CO3-
OAKOIIEro NOALEMHOE TEUEHHE, MOXKET XapaKTEPH3OBATLCA PA3BHUTHEM BOCXOMAALIEr0 MOTOKA PA3HOM
MHTEHCHBHOCTH. OLEHKa HHTEHCHBHOCTH Pa3BHBAIOLIETOCH TEYEHHA CO3AAaeT OCHOBY 1 MaTeMaTdec-
KOif TIOCTAHOBKH 3a4a4H. AHAJUTHHCCKHE PEILEHHS 3TOH 3aJauM NMOJyYeHbl A4 LIMPOKOTO AManasoHa
vyucen [Mpanatias. BepTuxanbHbiil MOTOK, B3aMMOAEHCTBYS CO BCTPEYHBIM MOLBEMHBIM TEYEHHEM,
CO3JaeT 3aCTOHHYIO 30HY. UHC/iCHHbIC DEICHUS ypaBHEHHHl MOTPAHHYHOTO C/IOA IS 3TOrO ciyvas
N0KA3aJIM, YTO 3aTOPMaXHMBAHHUE MOTOKA COMPOBOXIAAETCA CHHTYJIAPHOCTHIO, NPOSABIAIOILENCS B BALE
HEOrpaHH4YEeHHOTO POCTA CUABMIOBOTO CJIOA.

1131



